Category Archives: wildlife

South Africa and Bristol MA Wildlife Filmmaking

kruger-national-park-south-africa

This last week has truly been one of the most exhilarating, emotional and thrilling times of my life…I will be visiting South Africa this Summer, AND have been offered a place on the incredible Masters course in Wildlife Filmmaking at Bristol, in partnership with the BBC! I literally wept with happiness, joy and relief when receiving the news on Tuesday…literally just had the interview two weeks previously at the University, and everything I have worked for these past 6 years has been worth it. I am truly grateful for both amazing opportunities.

Thank you to all my friends and family for their endless and continual support, as well as belief in me to pursue my dreams. This feels like this is the beginning of some very exciting adventures, and can’t wait to find out what excitement, hard work and challenges lie ahead!

bbc earth

Hopefully you can join me on this journey and that I can inspire you to feel passionately about the natural world around us, and more importantly preserve it for future generations. It is our duty as filmmakers to protect the stunning and awe-inspiring places we visit and continue to tell the fascinating stories that unravel on a daily basis on this beautiful blue planet of ours.

UWESince I was very young, the remarkable literature talents of Lauren St John, David Alric, Michael Morpurgo and of course all of my history/biology/geography reference books provided me with an escape and world of wonder and curiosity about the natural world. I could travel the world from my bed, chair, rock, beach towel… and one place, always so vividly represented in all the books I read, was South Africa. Its rich culture, bright colours, sublime smells and majestic animals- and I yearned to visit one day. BBC documentaries and the mild attempts of the Spanish equivalent further gave me the impetus to one day visit this staggeringly beautiful country, and this I finally decided that THIS WAS IT! I’m going to SA this year after I graduate to have the experience of a lifetime.

plett

This is it! I am going to volunteer at the South African Animal Sanctuary Alliance, Plettenberg Bay and work as a multilingual tour guide (sounds posher than it is)and photographer/filmmaker intern. Each of the sanctuaries under SASAA include Monkeyland, Birds of Eden and Jukani wildlife, which fund themselves through revenues from tourists who take educational tours of the sanctuaries to continue to bring in funds.

Monkeyland

A detailed catalogue of all the SAASA species has not yet been made of the primates, birds and apex cats, and so compiling this information, along with taking photographs and film footage (for YouTube) of individual primates is an important part of the project. They do great work here and I am honoured to be a part of it, and help out in any way that I can.

jukani-wildlife-sanctuary

SO this will be my ‘job’ from June 2th till August 2nd! I’ll be writing regular updates on what I get up to, and how practical it is for YOU to VOLUNTEER for CHEAP ABROAD, it took me many hours to research ethical, well respected places that treat their animals well and don’t actually charge you to volunteer. The only cost involved is the homestay at Rock Road Backpackers (contact Mac: info@wwisa.co.za) which again is AMAZINGLY priced at £18 a night, FOOD, ACCOMODATION, TRAVEL to and from the sanctuaries included. Total cost for 36 days will be around £1600, but I’ve applied for £500 funding from the Leeds for Life Foundation, fingers crossed! Still an amazing prices considering.

university_group_rocky_road

They are SO lovely there, I’m feeling really confident about heading over now as they seem to be very experienced in receiving students. Currently taking my vaccinations now (ouch tetanus hurts!), which are all covered by the NHS, but be warnerd, rabies is £40 a shot! It is necessary though, especially since I’ll be working with primates, (and an odd bat or two if I get the chance).

south_africa_map_art

I really want to be able to make a difference at the SAASA (South African Sanctuary Alliance) by bringing my skills as a photographer/videographer/zoologist and researcher, as well as help to build up a collection of all the species and individuals at the sanctuary. Having studied zoology at the University of Leeds for 3 years now, I feel the need to travel and experience different cultures, sights and wildlife encounters before I go on to study for my Master this coming September. Not only do I feel I would grow as a person, but also gain further insight and build upon my current portfolio which will prove to be very useful when applying for jobs as a freelance camera woman. It has always been a life-long ambition to visit South Africa, I missed out on an opportunity field trip last summer due to my research project that was to be conducted in the UK on bat foraging distributions. There’s so many amazing activities to get up to there too, canyoning, scuba diving, sky diving, caving, whale watching and I’ll also be going to the world renewed Addo National Park with students from Washington University!

bristol-carousel3
One day..one step closer…

SO! I’m currently studying for my exam finals now, and can’t stop thinking how lucky I am. I mean, I have worked really hard to get to where I am…and it’s not been easy by any measure. These past three years a Leeds have been a rollercoaster of emotions- but cannot recommend going highly enough. University teaches you more than simply lectures and how to avoid drunk people! But it allows you to find yourself, your purpose, your dreams, what your capable of and most of all determined to, no matter what, follow your dreams and CREATE YOUR OWN LUCK too.

https://youtu.be/KnmdUn3qQeI

Advertisements

Interview with BBC’s Dr Chadden Hunter- From academia to wildlife production

2015-03-17 18.35.48 chadThe media and Zoology students at the University of Leeds were treated to very fascinating and inspirational talk by Dr Chadden Hunter, wildlife biologist and a BBC producer and director of ground-breaking series such as Frozen Planet and several upcoming exciting new series by the BBC- to be revealed soon! I had the incredible opportunity to have a television interview with him afterwards as part of our new “Eco Talks” for Eco Sapien, and really enjoyed delving into the world of wildlife filmmaking with a true professional. Chadden-Hunter David, producer of Eco Sapien, and I quickly set up 3 cameras to intermittently film it and added a Magnito microphone to capture Chadden’s dulcet Australian tones. eco I was rather nervous before hand as a huge fan of his work and having not presented on camera for some time- been living behind the camera and radio mic! chadden 2 Firstly the talk discussed making the transition from the world of academia into the wildlife film industry– a notoriously difficult and incredibly rewarding career and way of life that I am sure those of you who are reading this want to get into …keep reading on!

What I really enjoyed about the interview was how passionate and encouraging he was about getting into the world of science communication, because what many people wanting to get into this industry forget, is that although we are all competing to get that dream job and place on the next major blue chip BBC series- were are ALL working together as a TEAM to achieve the same goal: inspiring others to care and preserve the natural world around us and conserve it for future generations to enjoy. Wouldn’t it be a sad legacy if we were not able to save the very subjects that we film? That’s what we encompass at Eco Sapien, the collaboration of conservation biologists and creativity to communicate our passion for the natural world TOGETHER. chadden The interview and full write up will be out soon once the editing process has begun, so should take a while- WATCH THIS SPACE!  But here’s a little teaser into Chadden’s amazing aussie adventures…. Born in Mount Isa, a mining community in the remote north-east of Australia, he travelled with his family to pre-revolutionary Iran where his father was working as a field geologist. Following a few years in Arizona and Colorado it was back to Melbourne where Hunter happily settled back into Australian life. That strength of character was reinforced during the halcyon years of his adolescence when his enduring love of nature and the natural world really took hold. Moving to Cairns, he was suddenly surrounded by nature in all its stunning beauty and profusion. At 15 Hunter fell in love with scuba diving and saved every penny he could earn to pay for his new obsession, not least since he had the dream location to pursue it. camera_and_boy After Cairns he moved on to the University of Queensland zoology department, completing his Bachelor of Science in marine biology and working as a research scuba diver. He then studied bowerbirds in St Lucia to gain a First Class Honours degree in behavioural ecology. It was during this time he was taught by one of the people who was to have a profound effect on his life and the way it progressed…..

**Full write up soon, interview below!**

Short 10-minute version

Full 20-minute version

Major threats facing keystone species and the consequences for biodiversity

cell press logo  butterfly

Tania R.E –Esteban 1

School of Biology, Faculty of Biological science, University of Leeds, UK, LS2 9JT

 

The global threats facing keystone species is significantly impacting levels of biodiversity, due to the disproportionate effects keystones have on entire communities. They influence trophic interactions and provide ecosystem services of vital importance to the economic, social and cultural well-being of humans. It is therefore in our interest to establish the threats, the individuals most at risk, the potential cascading effects on ecosystems and how we are to manage them successfully in terms of reintroduction or mitigation. In this essay I review the major threats to a variety of different keystone species (at all trophic levels), examine how this influences levels of biodiversity and what effects they have on entire ecosystems. I also evaluate the current and potential management strategies that facilitate networks and allow them to be more resilient to future environmental change. Our knowledge of the concepts that underpin the fundamental basis of ecology can help us confront this as one of the greatest challenges in ecology.

Concept of Keystones

In different ecosystems, each specie plays a role within a community and can influence levels of biodiversity. However, the relative impact of each species can vary in terms of importance [27]. Such species that have disproportionate effects on ecosystems are known as keystone species [39]. According to network theory, keystones are intimately linked via ecological networks of highly connected and complex webs (Box 1, [9]). These include species at different trophic levels. Apex predators exert top-down effect on these levels, known as trophic cascades; whereby these strongly connected species indirectly influence community structure and ecosystem function [37]. The robustness of food webs to species removals varies, depending on the species and ecosystem type, where certain removals have greater impacts on ecosystem functioning and structure. Many apex predators are classed as keystone species because of the secondary extinction impacts of their removal on other species [7]. Predators directly impact upon herbivore numbers as well as indirectly through risk effects [34]. This then influences the relative abundance of producers- hence a ‘cascading effect.’

trophic cascasde

Equally, predators sustain levels of biodiversity via the suppression of other competitors (mesopredators) through competitive exclusion, and allow other species to co-exist [20]. Predatory release occurs when the apex predator is removed, increasing populations of the less competitive mesopredator. This then leads to a decline in its prey. Predator-prey dynamics as well as competition between intra and interspecific species also influence the structure of the food webs [1, 27]. The length of food webs can also greatly influence the direction of the cascade according to the exploitation ecosystem hypothesis [11]. These natural processes can be perturbed by threats to apex predators- whereby the removal of such keystone species leads to the concept of trophic downgrading [10]. As well as this, there is an alternate stable; where ecosystems are disturbed to such an extent that the cascade shifts from its prior state to another- when a tipping point is reached [10].

Box 1- Network theory

The fragile nature of ecosystems has been explored by Sole and Montoya [36], on the basis that if the nodes that connect individuals are randomly removed in a network, it remains stable. However, when highly connected individual are removed, this results in cascading effects and interference throughout the rest of the network. These keystone individuals form the framework and structure of the network. In real ecological networks, strong evidence for the removal of predators are known to not only directly impact its prey, but also have indirect effects via top-down forcing. Ecosystems processes such as primary production, nitrogen cycling and the establishment of invasive species are also affected (Figure 3 [10]).

network theory

mane

Keystones – threats to a complex web of interactions

Habitat destruction

There have been major declines in biodiversity within recent decades, in what has been described as the 6th mass extinction event [27]. The threats facing keystones and the ecosystem services they provide are predominantly anthropogenic [19], and habitat loss is arguably one of the greatest [15]. For example, the Yellow and Black-Casqued Hornbills are both in decline, which has been correlated with deforestation in Nigeria as well as forest sections along the Ivory Coast [28]. This is problematic in that the genera Ceratogyma are key seed dispersers of fruiting trees, and play an important role in maintaining the heterogeneity of forests and species diversity via gene flow [28]. Because of the large spatial distribution of their territories [45], up to 22% of lowland tropical rainforest species are dispersed by the 3 hornbill species within this genera [23]. Cultural ecosystem services include traditional ceremony wear as well as other benefits to the keystone tree species, Ficus, which in turn provides economic services to local tribes’ people. It is also an important food source for other species within the ecosystem [23].

Pale-Billed%20Hornbill

Urbanization

Other threats to keystones include the urbanization of many habitats. Increased contact between humans and species drive them to exhibit behavioural plasticity and alter their behaviour [33]. A majority of studies indicate that increases in urban environments decreases species richness [35], due to disturbances in breeding patterns, anti-predator behaviour, fitness, selection of habitat and overall population size. This has cascading effects along trophic levels [2]. The black-tailed prairie dog, a keystone specie, contributes to the health of steppe habitats by mixing the soil. This increases plant productivity and landscape heterogeneity as well as providing coyotes with a food source [3]. Their overall numbers have decreased as a result of increased urbanization. However, in contrary to the risk-disturbance hypothesis, where increases in anti-predatory behaviours (such as vigilance) are seen, some populations exhibiting behavioural plasticity have reduced their vigilance due to habituation [12]. This has negatively impacted the vegetation due to increased foraging time, which has ‘rebounding’ effects back up the trophic cascade, on other herbivores and predators [33].

Climate change

Complex plant-pollinator webs are also disturbed by habitat destruction due to their sensitivity to perturbation [29]. This is the case with the keystone plant mutualist, Heliconia tortuosa,

Figure 1. The warming trend set to continue: (Left) Projected increases in temperature by 2081-2100 if mitigation and use of renewable resources is adopted. (Right) These are the predictions if the business as usual strategy continues (source: IPCC, Fifth assessment, 2014).

IPCC

which supports a variety of hummingbird species, and is considered a central node in this web interaction [17]. Recent work has provided evidence for the fragmentation hypothesis, where forest composition is fundamental to the reproduction of H. tortuosa. Thus, the reduction in heterogeneous landscapes due to deforestation is thought to alter both plant distribution and pollinator behaviour, leading to declines in both populations [29]. Equally, other systems have also shown that deforestation alters pollinator behaviour. Phaethornis hummingbirds will take longer flight paths to avoid deforest patches and agricultural landscapes, decreasing pollinator efficiency. This affects the survival of plant species dependent on this mutually beneficial ecological interaction- and has led to regional declines in biodiversity [16].

Bee%20Venom2

Climate change also poses a major threat to the biodiversity of keystone pollinators (such as bats, bees and birds [19]). One third of the world’s crop production is met by the ecosystem services provided by insect pollinators [30], with agricultural pollinator services estimate to be worth £120 billion per acre, annually [40]. Phenological shifts are also increasingly being observed, with the impact evident in both pollinator and plant keystone species [4]. In Japan, seed production in Corydalis ambigua and Gagea lutea decreased due to the warmer temperatures causing them to bloom earlier, resulting in phenological mismatching with its key pollinator, Apis Mellifera. Consequently, this reduced pollination efficiency and success [31]. Climate change has also altered bee distributions and caused phenological shifts in their flight period. Predictions suggest that the spatial shifts in bee movements will be faster than that of its food resource, also causing phenological mismatching and decrease wildflower pollination [4]. Therefore, climate change poses not only a threat to the keystone plant-pollinators, but to other communities dependent on wildflower meadow species [31]. This highlights the fragility of these mutualistic interactions as key nodes in an ecosystem, due to their varying response to temperature change.

polar bear 1

A major issue with climate change is predicting the influence it will have on biological communities in the future [13]. The polar bear (Ursus maritimus) is an apex predator in the Arctic ecosystem which is very sensitive to changes in sea ice cover, where it hunts, migrates and reproduces [25]. The rate of temperature increase in the Arctic and northern regions have doubled in recent years, reducing sea ice cover [24]. In particular, over the past 30 years, the Western Hudson Bay has seen earlier ice break up as well as reduced snow fall (Figure 2). The impact on ringed seals (a keystone specie) with longer ice-free summers has subsequently lead to changes in polar bear behaviour [25]. The continuity of this pattern threatens seal pup survival as they are forced to swim for longer periods of time in open water, exposing them to predation [13]. Ringed seals provide polar bears with net wet weight calorific gains of 2.2-5.3 kcal/g [43], and the decreased recruitment of ringed seals has driven polar bears to target nesting birds, as they are unable to gain sufficient energy [25]. This warming trend is set to continue with possible increases in temperature of 5.0-6.4˚C by 2081-2100 (Figure 1, [24]).

Figure 2: Sea ice extent between 1979-2012 throughout the summer months. Evident loss seen annually. (Source: Iverson [25]).

Hunting and over-exploitation

Hunting and over exploitation is also a prevalent threat to many keystones worldwide. The removal of a keystone predator is a major cause of secondary extinctions, demonstrating the strong influence of top-down effects on lower trophic levels [10]. This was seen with the expatriation of the Grey wolf in Yellowstone during 1935 (due to hunting), which increased populations of elk as a result of predatory release [39]. Increased levels of browsing on aspen, cotton and willow saplings in riparian river systems led to a more homogenous landscape and reduced diversity [34]. The wolf played a vital ecosystem role by maintaining diversity as well as healthy numbers of mesopredator populations. Classic studies of the consequences of predator removal are also illustrated with sea otters [10]. Enhydra lutris was nearly hunted to extinction by Russian fur traders at the beginning of the 20th century, resulting in the predatory release of sea urchins, which reduced Kelp forests by intensively over-browsing [42]. However, with the return of the otter during the 1970’s to certain areas, the recovery of the kelp forests was observed due to the effects of top-down control on urchins. The kelp populations in regions where otters were unable to recolonize did not recover [11], demonstrating how the impact of hunting can alter and result in the simplification of food webs.

orca

The general pattern of global declines in apex predators is a cause for concern, due their strong connectedness in ecosystems and influence in altering the stability of food webs [19]. This is less well studied in marine ecosystems [20]. For example, sharks are apex predators in marine ecosystems [22], and are threatened by hunting. Demand for shark fin during the 90’s increased mortality rates by 80%. Many debate the function of sharks as keystone predators [8], however more recent studies suggest that although not all shark species can be described as keystones, some are key in structuring some ecosystems [44]. Indeed, strong arguments made by Estes et al., [10] concluded that the top-down effects exerted by apex predators are equally as influential as bottom-up effects. In Western Australia, Tiger sharks are considered a keystone apex predator; as mesopredator diversity (dolphins) and herbivores (dugongs) abundance are indirectly affected by the “seascape of risk,” as well as by direct predation [20]. 15 years of data collection in Shark Bay has supported the idea that the non-predatory effects of top apex consumers (predator keystones), play a pivotal role in influencing ecosystems [10]. Thus shark declines are affecting mesopredator numbers and behaviour, with unknown consequences on the rest of the aquatic communities [44].

b4 and after 1545061_10151839411055598_1286823925_n

Clearly, hunting apex predators can have detrimental, aggregating effects on lower trophic levels, both directly (via predation) or indirectly (through the landscape/seascape of fear concept). Equally, the idea that keystone’s play a role within and across communities [27], was seen with the decline of sea otters in the Aleutian archipelago populations due to increased predation by Orca [42]. The overexploitation of fish stocks in these waters in turn reduced populations of pinniped that fed on them [11]. This altered the orcas behaviour which began targeting otters as an alternative food source. Kelp forests once again declined as urchins were free of predation. This is known as the exploitation ecosystems hypothesis, where the food-chain length determines the level of influence and control top-down or bottom-up systems have in the primary productivity of ecosystems [10, 11].

Great White Shark

Future: Management, mitigation and reintroduction

Problems

In terms of keystone species, the challenges of managing and mitigating their decline arise due to the complexity and interconnectedness between the many species they affect within ecological communities [5]. For example, managing the declines of seed dispersers is hard due to the large spatial ranges of their territories and difficulty in quantifying dispersal rates [23]. The extent to which urban-adapted keystones will affect the rest of the community depends on their ability exhibit behavioural plasticity and adapt, which varies between species and landscape scale [35].

The threat of climate change is also difficult to predict, thus is hard to prevent plant-pollinator loss in the future as phenological shifts continue at different rates [4]. Similarly, the uncertainty surrounding model projections of sea ice loss threatens the future survival of many Arctic species [25]. In aquatic systems, the lack of protection out of marine conservation areas and the extensive movements of keystone predators such as sharks, creates problems in managing and mitigating their decline [21, 22].

Equally, the overall concept of what constitutes a keystone species provides difficulties in management [7]. The definition can be broadly used to describe a spectrum of keystone types, which is confusing and problematic for conservation policy [7]. With an increasing number of species being given ‘keystone status,’ the lack of consistency in defining them more scientifically is rapidly becoming a challenge in itself [27].

wolf-82e30

Identification of which trophic direction is most influential in affecting levels of biodiversity within communities is controversial [10]. Often, it is dependent upon the ecosystem as well as the keystone specie. Some argue that primary production controls ecosystems bottom-up [18]. Others believe predatory top-down control is more influential, and is currently gaining more support due to the mounting evidence that global predator declines have significant impacts on communities and ecosystem processes (Figure 3, [10]). However, even if top-down systems were recognisably more important in structuring ecosystems, it is hard to determine the most prevalent impact predators have in influencing interactions within food webs- directly (through predation/lethal) or indirectly (risk effects/non-lethal [34]).

Figure 3: Indirect impacts of apex predators on different ecosystem function and processes (Source: Estes et al [10]).

Indeed, this is the case with sharks, where the importance of risk effects might be underestimated [26]. In terrestrial ecosystems, the ‘landscape of fear’ as well as direct predation by wolves is being taken into account in studies of natural systems, (eg: Białowieża Forest, Poland) in order to consider the nonlethal effects on herbivores [32]. Proposals by Manning et al., [34] suggest that controlled experiments in the Scottish highlands would provide much needed data and viable evidence for their reintroduction. However, public opinion is often divided in terms of reintroductions [37], and the funding and costs of trial experimentation are deemed wasteful [32].

The nature of predicting ecosystem response with the removal of a keystone is also very difficult when taken from a stable environment- where prior knowledge of the response in unknown [36]. Only a few studies have examples of networks that are partially mapped [5], and the substantial lack of data on a range of ecosystems makes management difficult [36]. Much earlier research does not indicate the strength of each trophic link, thus it is difficult to compare to the current consistent and empirically accurate data. Even when disrupted, other factors such as intraspecific competition can alter the response, and may take many years for the effects to propagate in the ecosystem [10]. Current strategies by the US Endangered Species Act fail to incorporate this [41].

Possible solutions?

It is vital that scientists are able to quantitatively asses the relative contribution of each proposed keystone [36]. Only then can policy makers implement management strategies that target and focus on protecting species that have the most important functional role- rather than the rarest specie [27]. We must also therefore demonstrate their functional importance before policy-makers act on the impetus of the analogical term of a keystone [7]. Of equal importance is understanding the connectivity of networks as well as attempting to mitigate the threats facing keystone apex predators. The geographic spatial scales at which natural or previously manipulated experimental removal experiments varies enormously, thus must also be considered in future reintroductions and management plans [39].

panda

As already established, complex ecological concepts are hard to manage as many factors feed into the function, stability and persistence of food webs; including biotic and abiotic factors [10]. It is clear how important abiotic interactions greatly influence ecosystems and community structure and function, and must be considered if we are to manage and mitigate the effects of current and future climate change [19]. Therefore, as the fifth assessment by the IPCC suggests, anthropogenic climate change policy should focus on mitigation by following resilience pathways and realising adaption measures towards a more sustainable future [24]. If we are to reduce the number of extinctions, policy must also address the source of the problem; fossil fuel consumption, to mitigate the severe effects it could have on vulnerable keystones and their habitat [24].

img_2280-001

Other concepts such as network theory have helped explain how the systematic targeting of particular keystone individuals is far more destructive than random removal [36]. Therefore fisheries must implement this into their harvesting methods and reduce their impact on sharks by implementing annual moratoriums to prevent over harvesting. This will require international cooperation to account for the spatial movements of these keystone predators [44].

Conclusion

The threats facing keystone species may arguably have the greatest impact upon ecosystem function and stability globally [10]. Keystone predators in particular play an important role as their loss is a cause of many secondary extinctions [21]. The complexity of these networks cannot be undermined, and scientists must now be able to predict and further assess why certain keystone species are more robust or more at risk from collapsing early on than others. This will determine which species will have the greatest impact upon the stability and function of communities [46]. Additionally, completion of fully described networks will need to be of a multidisciplinary manner, in order to expand upon the current knowledge of these systems. Mitigating the threats as well as assessing the success of keystone reintroductions in influence levels of biodiversity is also key [44]. The reduction of harmful human activities is also necessary in order to prevent future extinctions and declines in biodiversity [24]. Ultimately, the solutions to the challenges facing keystones and ecosystem function are not simple. However, further knowledge of how these systems work and the implementation of efficacious management strategies will lead more efficient restoration and protection.

cameleon Animals

 

References

  1. Allesina, S, and Pascual, M. (2008) Network structure, predator-prey modules, and stability in large food webs. Theoretical Ecology 1, 55-64.
  1. Angeloni, L, et al. (2008) A reassessment of the interface between conservation and behaviour. Anim Behav 75, 731-737.
  1. Bangert, RK and Slobodchikoff, CN. (2000) The Gunnison’s prairie dog structures a high desert grassland landscape as a keystone engineer. Journal of Arid Environments 46, 357–369.
  1. Bartomeus, I, et al. (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences of the United States of America 108, 20645-20649.
  1. Berlow, EL, et al. (2009) Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences of the United States of America 106, 187-191.
  1. Brose, U, et al. (2006) Allometric scaling enhances stability in complex food webs. Ecology Letters 9, 1228-1236.
  1. Cottee-Jones, et al. (2012) The keystone species concept: a critical appraisal. Frontiers of Biogeography 4, 117-127.
  1. Dulvy, NK, et al. (2008) You can swim but you can’t hide: the global status and conservation of oceanic pelagic sharks and rays. Aquatic Conservation-Marine and Freshwater Ecosystems 18, 459-482.
  1. Dunne, JA, et al. (2002) Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America 99, 12917-12922.
  1. Estes, JA, et al. (2011) Trophic downgrading of planet earth. Science 333, 301–306.
  1. Estes, JA, et al. (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473-476.
  1. Frid, A, and Dill, L. (2002) Human-caused disturbance stimuli as a form of predation risk. Conserv Ecol. 6, 31-54.
  1. Ferguson, SH, et al. (2005) Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Marine Mammal Science 21, 121-135.
  1. Garibaldi, A. (2009) Moving from model to application: Cultural keystone species and reclamation in fort MCay, Alberta. Journal of Ethnobiology 29, 323-338.
  1. Gross, L. (2006) Predicting Species Abundance in the Face of Habitat Loss. PLoS Biol 4. (doi: 10.1371/journal.pbio.0040336)
  1. Hadley, AS, and Betts, MG. (2009) Tropical deforestation alters hummingbird movement patterns. Biology Letters, 5, 207-210.
  1. Hadley, AS, et al. (2014) Tropical forest fragmentation limits pollination of a keystone under story herb. Ecology 95, 2202-2212.
  1. Hairston, NG, et al. (1960) Community structure, population control, and competition. Am Nat 94, 421-424.
  1. Harley, CDG. (2011) Climate Change, Keystone Predation, and Biodiversity Loss. Science, 334, 1124-1127.
  1. Heithaus, MR, and Dill, LM. (2006) Does tiger shark predation risk influence foraging habitat use by bottlenose dolphins at multiple spatial scales? Oikos 114, 257–264. (doi:10.1111/J.2006.0030-1299.14443).
  1. Heithaus, MR, et al. (2008) Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution 23, 202-210.
  1. Hinman, K. (1998) Ocean roulette: conserving swordfish, sharks and other threatened pelagic fish in longline-infested waters. Leesburg: Harvard Press.
  1. Holbrook, KM, and Smith, TB. (2000) Seed dispersal and movement patterns in two species of Ceratogymna hornbills in a West African tropical lowland forest. Oecologia 125, 249-257.
  1. IPCC, (Intergovernmental Panel on Climate Change). 2014. Summary for Policymakers in Impacts, Adaptation, and Vulnerability. Part A. United Kingdom and New York: Cambridge University Press.
  1. Iverson, SA, et al. (2014) Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic. Proceedings of the Royal Society B-Biological Sciences 281, 43-51.
  1. Johnson, SD, et al. (2009) Pollination and breeding systems of selected wildflowers in a southern African grassland community. South African Journal of Botany 75, 630-645.
  1. Jordán, F. (2009) Keystone species and food webs. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1733-1741, (doi:10.1098/rstb.2008.0335).
  1. Kemp, AC. (1995) The Hornbills. Oxford: Oxford University Press.
  1. Klein, AM, et al. (2007) Importance of Pollinators in Changing Landscapes for World Crops. Proceedings of the Royal Society 274, 303–313.
  1. Kremen, C, et al. (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters 10, 299-314.
  1. Kudo, G, et al. (2004) Does seed production of spring ephemerals decrease when spring comes early? Ecological Research 19, 255-259.
  1. Kuijper, DPJ. et al. (2014) What Cues Do Ungulates Use to Assess Predation Risk in Dense Temperate Forests? Plos One 9, 12-16.
  1. Magle, SB. and Angeloni, L M. (2011) Effects of urbanization on the behaviour of a keystone species. Behaviour 148, 31-54.
  1. Manning, AD, et al. (2009) Restoring landscapes of fear with wolves in the Scottish Highlands. Biological Conservation 142, 2314-2321.
  1. McKinney, ML. (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems 11, 161-176.
  1. Montoya, JM, et al. (2006) Ecological networks and their fragility. Nature 442, 259-264.
  1. Outland, K. (2010) Who’s afraid of the big bad wolf? The Yellowstone wolves controversy. [Online]. [Accessed 10 November 2014]. Available from: http://legacy.jyi.org/volumes/volume11/issue5/features/outland.html
  1. Platten, S. and Henfrey, T. (2009) The Cultural Keystone Concept: Insights from Ecological Anthropology. Human Ecology 37, 491-500.
  1. Ripple, WJ, and Breschetta, RL. (2004) Wolves, elk, willows, and trophic cascades in the upper Gallatin Range in Southwester Montana, USA. Forest Ecology and Management 200, 161–18.
  1. Schulp, CJE, et a (2014) Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecological Indicators 36, 131-141.
  1. Soulé, ME, et al. (2005) Strongly interacting species: conservation policy, management, and ethics. Bioscience 55, 168-176.
  1. Steneck, RS, et al. (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation, 29, 436-459.
  1. Stirling, I, and McEwan, EH. (1975) Calorific value of whole ringed seals (Phoca Hispida) in relation to polar bear (Ursus Maritimus) ecology and hunting and behaviour. Canadian Journal of Zoology-Revue Canadienne De Zoologie 53, 1021-1027.
  1. Techera, EJ, and Klein, N. (2007) Sharks: Conservation, Governance and Management. Earthscan, 155-175.
  1. Trail, PW. (2007) African hornbills: keystone species threatened by habitat loss, hunting and international trade. Ostrich 78, 609-613.
  1. Worm, B, and Myers, RA. (2003). Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84, 162-173.



Loss of Apex Predators

News & Views

Loss of Apex Predators in Dual-Apex Systems

By Tania Esteban, Samuel Ross, Jessica Rushall, & Louise Shuttleworth

LION2

Apex predators are in global decline. The description of possible complex interactions between apices in dual-apex systems calls for further research.

Apex predators occupy the highest trophic level of an ecosystem, thus do not have natural predators themselves. They are capable of affecting ecosystem functioning through consumer-control and strong trophic interactions. There are currently unknown interactions between apex predators and mega-herbivores in systems where both are present. Because of this, the loss of apex predators from a ‘dual-apex system’ could affect communities in a highly complex manner. The decline of apex predators should be considered in systems with both mega-herbivores and apex predators. Tambling et al., (2013) explored this concept in an African ecosystem where lions (apex predators) and elephants (mega-herbivores) co-exist. In this article we discuss the potential effects of apex predator loss in this ecosystem.

trophic cascasde

Mega-herbivores perform important functional roles in ecosystems. For example, elephants alter plant community architecture through trampling and overgrazing1. Direct aggressive interactions between elephants and other animal species also occur in these systems2, highlighting the key role of mega-herbivores in influencing species dynamics. Elephants also have indirect impacts on other herbivores through exploitation competition over resources, and depending  on the  system,  are sometimes able to outcompete smaller herbivores1.

meg herbs 2 meg herbs 1

Figure 1. Weighted trophic interactions between species in the presence of apex predators: (a) with; and (b) without mega-herbivores. Interaction strengths are depicted by line thickness.

Lions are important apex predators in African ecosystems. They exert consumer-control, through predation on small and medium/large sized ungulate species, such as duiker and kudu respectively1. Like elephants, lions are classed as a flagship species because they are globally renowned, captivating, and of conservation concern. Lions are classed as vulnerable3, and are in decline because of hunting and persecution; diseases including CDV; and habitat loss due to agriculture and urbanisation4. If lion numbers continue to fall, large detrimental impacts on these ecosystems might be seen.

In multiple apex systems, interactions between apices are likely. Despite a lack of literature on the topic, there are potentially undescribed interactions between species occupying these apex roles.

Apex predators are likely to interact indirectly with other ‘apex consumers’ including mega-herbivores5. One of these indirect interactions can be facilitation by one apex on another; for example facilitation of predatory success of apex predators by mega-herbivores through environmental modification1. Another of these indirect interactions between apices would be the loss of one apex from the system. It is widely recognised that the loss of consumer-control has widespread effects, with the impacts of this loss propagating through the ecosystem. On a larger scale, trophic downgrading is a global threat, as systems are driven towards simplicity when consumer-control by apex predators is lost5.

In an African thicket ecosystem, Tambling et al., (2013) studied the interaction between lions (apex predators) and elephants (mega-herbivores). In this system elephants facilitate predatory success of lions through overgrazing and trampling of dense thicket vegetation. This allows access into the dense vegetation, which lions utilize because they are sit-and-wait predators. Lions will preferentially select for foraging habitats that maximise cover, over abundance or value of prey6. Therefore, modification by elephants facilitates an increase in encounter rates between lions and their smaller ungulate prey, as these  species predominantly inhabit this thicket vegetation1. In the absence of mega-herbivore facilitation, lions predominantly feed on larger prey species, as they do not have access into the dense thicket vegetation in which the smaller species reside [see figure 1].

As briefly discussed by Tambling et al., (2013), loss of apex predators in these systems could lead to multi-directional trophic cascades. Compared to unidirectional trophic cascades, impacts of predator loss can radiate through the system in a nonlinear manner. For example, apex loss could propagate down through trophic levels and ‘rebound’ back up towards the second apex (mega-herbivore) through changes in populations of smaller herbivores.

In a classic trophic cascade, apex predator loss results in increases in herbivore populations7. The extent of population responses to predatory release depends on ecosystem structure. In the African thicket ecosystem where mega-herbivores facilitate lion predatory success on small ungulates, if lions were lost from this system, the resulting population changes of small herbivores would be greater than in the absence of facilitation by elephants. Where elephants are not present, lions mostly cannot access small prey species that frequent dense thicket vegetation so they predominantly prey on larger ungulate species1, resulting in greater proportional population increases in larger ungulates if predatory release were to occur.

Following the exploitation ecosystem hypothesis, if consumer-control is lost, systems are limited purely by primary productivity so the extent of primary production determines trophic complexity8. If lions were lost from a dual-apex system, the ‘second apex’ would likely be affected, as mega-herbivores would face increased competition due to predatory release of other herbivores [See Fig. 2a]. Systems that support mega-herbivores face increased herbivory initially, so when apex predators in these ecosystems are lost, mega-herbivore populations are at greatest risk of collapse due to competitive exclusion of these species with low rates of secondary production9.

Although Tambling et al. (2013) studied facilitation in dual-apex systems, as far as we are aware there is no current research into the effects of apex predator loss in these ecosystems. The African thicket ecosystem should be used as a model for future studies into dual-apex interactions, as exploration of connections in this novel system was valuable. As briefly  outlined, complex multi-directional trophic cascades have not been widely recognised and described. If we are to gain valuable insight into the impacts of apex predator loss, we must research this area further, in different dual-apex systems, as currently little is known about the consequences of apex predator declines. Equally, the role of consumer control in structuring ecosystems is not widely recognised5. This further highlights the need to consider the effects of apex predator loss in ecosystems globally, and the importance of preserving all types of apex consumers in an increasingly downgraded world.

References

  1. Tambling CJ et al. (2013) Basic and Applied Ecology 14, 694-701.
  2. Slotow R, & van Dyk G. (2001) Koedoe 44, 85-94.
  3. Bauer H et al. (2012) Panthera leo: The IUCN Red List of Threatened Species. (available at www.iucnredlist.org). Updated 2014 (Accessed 01 December 2014).
  4. Snyman A et al. (2014) Oryx, 1-7.
  5. Estes JA et al. (2011) Science 333, 301-306.
  6. Hopcraft JGC et al. (2005) Journal of Animal Ecology 74, 559–566
  7. Pace ML et al. (1999) Trends in ecology & evolution 14, 483-488.Oksanen L, & Oksanen T. (2000) The American Naturalist 155, 703-723

Into the Mist: Day 1 of Deer shoot

6am wake up calls come very easily to me in the UK, mainly because the sun percolates through my curtains at that time, and partly down to the noisy customers that happen to be buying todays newspaper from the shop beneath us. But today I had even more of a reason- Deer filming!

Here is a short clip of the deer I got the week before, couldn’t resist this little fawn!

Here is the shot of the two male Red Deer having a par at each other…nothing too serious as it is late in the rutting season, so are winding down from their predominantly active season. Filmed with basic SLR (Canon 600D) and VERY basic £25 Tamron 70-300mm lens, so pardon the quality and jerkiness and lack of editing YET!

Harewood Park Start: Harewood Church Lane Distance: 5 miles Map: OS Explorer 297 Lower Wharfedale and Washburn Valley

maps
We started near the church and headed down towards the stank and Carr wood, neat the road where the der tend to browse.

As part of the brilliant new YouTube Channel, Ecosapien, I work as a camerawoman to help get some of the story shots for the team to edit into one of the weekly episodes that David Bodenham broadcasts out. I am so grateful to be able to help out with something so exciting- the combination of stunning images with factual information targeted towards 13-25 year olds. Some more filming this Thursday so can’t wait! We parked up in a small neighbourhood (and yes we did check for a “Residents only” sign!) some way away from the deer park. Loaded up with a Manfretto Tripod, Canon 600D and Tamron 70-300mm I headed off with David to see if we could catch a glimpse of these beautiful British mammals. It was one of the most misty days I had come across being in England, and it was incredibly difficult to locate them at first. We headed down the side of the road to see if they had congregated by the roadside farmland, but with no luck. Back through the moss, thicket and ferns. It was truly magical walking through the forest that was so still. Quiet. Damp. Cool… The trees were playing tricks on my mind. Surely that tree was a deer? David assured me it wasn’t. I even had my contact lenses in at the time. I am certainly glad I had layered up correctly, the air was damp but very cold as well. Always put a thermal top underneath your clothes (sorry, love that Shakira song!) Then at the other side past the cattle grid we had more luck. The stalking began… This next stage of setting up your camera and trying out different lenses was really good fun for me. I have used my DSLR in lots of filming before but not at the adequate settings- aperture 5.6, 1080P 50f, ISO 200, white balance Auto. try it on your Canon model! We got a couple of establishing shots of the trees in the mist, just to highlight to the audience what the day was actually like! Then we saw the emblematic shape of antlers in the distance that soon enough melted away again in the depths of the mist. I could only hear the clashing and clanking of the antlers echoing through the mist as I crawled ever closer on the dew laded moss. It was thrilling. First Day Of Autumn In Richmond Park...LONDON, ENGLAND - SEPTEMB The next part of the shoot involved a lot more crawling. And yes, I got soaked but this is what you do to get the shot! it was so very worth it in the end after many failed attempts to get decent and clear shots. Never had getting soaked been so much fun! We stalked them all the way to the very same field that we had originally walked to, and for the very first time- I saw so males rutting! This is the best time of year to see deer rut (the mating season). The rutting month varies between species, but mostly it is during the autumn. You see the stags using their antlers in fearsome trials of strength during the rut (a Middle English word meaning ‘to roar’), and an enraged or injured stag can quite often be a dangerous animal. The episode is about the impact of the over browsing as Deer can have a huge impact on forestry operations. They cause extensive damage to young trees, either by stripping the leaves in the spring or by eating bark in winter or rubbing the velvet off their antlers in the summer. All of these actions can kill young trees. Many areas have to be deer-fenced to protect the trees until they are large enough to survive being browsed. Also, having no natural predators in the UK, deer numbers can become very high. For these reasons they are culled in many places. In another episode we will be talking about the reintroduction of wolves back to the UK, and I will be writing another feature soon! wolf-82e30 We had been able to find a small ditch as the side of the field that enabled us to get closer to them- we got some cracking shots of the males fighting it out in front of the females. With two stags, a third tried to join in! The males were pumped up, and also sniffing out the females. Brilliant day, I would highly recommend visiting Harewood to see them, and it is very much worth getting up early for.

You of course can actually if you go out of leeds on the A61 you will reach a large set of gates into the rear of Harewood. Then turn left and you can park there. If you go across the road, through the gates & turn left down a wooded path follow the path until it comes out through a wood gate back onto the main road turn left pass the main entrance and then take the next turn left on this road for 1/4 of a mile (no cars allowed) .You should see them on the right as the road drops down rather than get damp and mossy (but that’s the fun part!) You can also start from the village centre, parking at the village hall in Church Lane. The estate village of Harewood sits outside the entrance to Harewood House, one of Yorkshire’s premier stately homes. Other features include the Harewood Arms and the remains of a castle which we walked past on our trip down. h

Interview with Simon Reeve

simon 1
Interview with Simon Reeve!
​December 15th, 2013
I got the incredible opportunity to chat to Simon Reeve about his brilliant new series on BBC one, Pilgrimage, where he takes us on a fascinating journey through Norfolk, Lincoln, Spain (Santiago de Compostella), Italy, France and Jerusalem to find out about our ancestors’ urge to go on fugacious pilgrimages.
Throughout the 3 part series, he meets modern-day pilgrims to ask them about their motivation behind their “adventures” as he calls them, meeting some rather captivating people along the way. Take the utterly dedicated 61-year old Lindsey, carrying his 25kg cross to send out the message of Christ’s suffering. Simon admits he’s not a man of religion, but was really eager to meet people and find out how these people lived and travelled. It really was another brilliant series, he has such an ease with people and a likeability that makes you want to make the journey with him.
I was personally excited about episode two, where he travelled through Northern Spain where my Spanish family live! Very proud that it has become one of the most popular Pilgrimage walks, which can take up to anything from a few weeks to a month. The remains of St James are said to have been found in the Cathedral in Santiago. Never knew it held so many secrets…
vatican---simon-17
Luckily he has another series on the way! The tea trail shows Simon heading to east Africa to uncover the stories behind the nation’s favourite drink. While we drink millions of cups of the stuff each day, how many of us know where our tea actually comes from? The surprising answer is that most of the leaves that go into our everyday teabags do not come from India or China but are bought from an auction in the coastal city of Mombasa in Kenya, and as a tea lover myself I was actually very surprised!
s
From Mobassa, Simon traverses through the awe-inspiring Kenyan and Ugandan landscape, meeting several of the millions of people who pick, prepare, package and export our tea to the world. There are some darker tails to be told, however, about prostitution and child labour, so he really does explore every aspect of this particular trail.
He then follows up with the coffee trail and Simon heads to Vietnam to uncover the stories behind the energy boosting morning up-lifting drink. Again rather surprisingly it is not Brazil, Colombia or Jamaica where most of it comes from, but Vietnam! 80% of the coffee that us British drink is the instant, cheaper coffee bean, (not the more expensive one found in Starbucks!) We see how in Hanoi, after the war nearly 40 years ago, there was a massive surge in coffee growing across the dishevelled landscape as the demand increased and people took the opportunity to earn a little more. But, as we shall see, this has had a great impact once again on the landscape, and some experts think that it’s a matter of time before the quality of the soil will be simply too poor for anything to grow at all.
 s
It really was incredible talking to someone who is so well travelled and has such a respect for people and the environment, such a gentleman, so thank you Simon and good luck with all your travels! He has got another program coming on soon called Sacred Rivers so keep your eyes peeled for that! Check out my interview with him!

Interview with Alex Jones

Alex Jones is wildlife cinematographer, producer, presenter, editor and extreme adventurer, who has created his own remarkable blue-chip documentaries as well as work on a whole host of films, TV shows and adverts. His unique skills using the EPIC Red have not gone unnoticed and he has recently won a prestigious Panda Award at the Wildscreen Film Festival, as well as his footage being used in a major new BBC series. I got the chance to chat to him about where his enthusiasm and love for wildlife all started.

Alex

Growing up in California, he has always been passionate about wildlife- picking up snakes at age of 9 in his backyard, and has been filming ever since he can remember. It surprises me when he mentions that he really aspired to become an entomologist, having seen him as a full-on explorer and cameraman, it is seemingly difficult to imagine Alex sat in his room pinning down another Panagaeus cruxmajor to his collection rather than being armed with an SD card and another 6 hours’ worth of footage.

snakee

“Their world is so different; a blade of grass can look like a tree from their perspective.”

And yet this makes sense; when you begin to look at his work. He has carried this love for what many would consider their worst nightmare over to what he loves filming- macro. His latest fascinating clips of a jumping spider, award nominated Curious snail and Sand-crabs were shot in his custom made set and studio which he built with his colleagues. They’re looking to get some sequences on side-winders as well as a variety of other hard-to film species, or those whose lives are largely left untold.

“To get the best quality footage, you’ve got to be able to get the lens ontop of them and have control the elements such as light, wind- except the behaviour of course!

snail

He tells me about the most varied things he gets up to on a day to day basis. Deliberately seeking out danger, nothing seems to phase The Adventurer– going into caves, old mine shafts inhabited by a myriad of snakes and bats. One particular place he went to, which was even too extreme for Alex, was a cave powdered with volcanic ash.

“When you enter into the caves, its very tight, you have to crawl on your stomach. The ceiling felt like flour.” He tells me he was hoping not to get caught out by a cave collapse…

The most dangerous encounter? Without question- Crocodiles. He was wrestling one which had caught him from under the water, he says it was an incredibly intense moment, particularly since it was 8ft crocodile Vs an 5ft 6 Alex. He describes the moment where he was in the water when it brought him down, his friend and fellow cameraman came to the rescue, but even he admits it was a close shave.

He loves all aspects of wildlife filmmaking. Everything he does currently is reflected by what he has seen with the enigmatic blue-chip series, such as Blue planet. In terms of presenters, he used to present more hands-on like his childhood hero Steve Irwin. However, the more inclusive and poignant reminisces of Attenborough have inspired him to take on a more “BBC” approached style of presenting to camera, although I still believe the acting lessons will slip out now and then when he is overcome with excitement by a dangerous snake- more Steve Backshall then!

What else does he get up to? He tells me he’s working all the time, editing, researching animals to film, scenery shots with friends. However when he does have the time, he enjoys hiking, extreme surfing, rock climbing, spelunking in Thailand, Africa, California. His seemingly limitless supply of energy emanates through to his camerawork. The EPIC Red that he praises highly, is easy to programme to his specific needs, looks beautiful, sharp, and a professional “work horse,” which can cope with extreme conditions- rain, sand.

“It’s the elements that you don’t see behind the scenes, that’s tough on any camera.”(He’s of filming sand dunes).

He offers us his top tips if you’re filming out in extreme conditions.

“Be smart about what you’re doing, think on your feet, depending on the situation. Deserts in California and in Montana have two very extreme temperatures throughout the day, you have to love it too at the same time because it will get to you if you don’t.”

He admires the one and only award-winning Doug Allan and marvels at his endurance in his specialized field of polar cinematography. Talking of awards, he was very nervous about Wildscreen- his incredibly epic and thrilling shots of the beach master in California, won in the youth and against all odds category. He got the amazing opportunity to meet Doug Allan, Emma Blackwell, Fergus Beeley and many more! Here are some photos of the exciting awards night:

10285199_575849352542941_874010301232851276_oThe equally talented Emma Blackwell with Alex Jones. 10733835_927901867220685_812892603592160564_o

A Panda award!

What the most technically challenging shoot? The most challenging to film he tells me is his award nominated elephant seals of California.

“Only shot in 4 days, the first 2 days it was raining, but it was incredibly hard. The 4th day he got most of the shots. But was worried that I couldn’t get it all. I was all very stressful, equipment was failing too, weather bad, and I was alone with no help from crew. Intense! But staying with them all day you figure out behaviour, and with some smart thinking and being fast with your actions- it become the norm.”

He also tells me that it was emotionally hard sometimes to witness the helplessness of the seal pups being smothered by the testosterone pumped and over-amorous males which will crush anything and anyone in their way.

mqdefault

He’s recently joined the brilliantly exciting Animals bytes TV. His latest episode features a Rattlesnake which was made a year ago which they went off to find, check it out here: https://www.youtube.com/watch?v=at9M0i25Al0

“They’re the 2nd biggest, cause more deaths that any other snake- its very aggressive. My favourites are side-winders. I found it in a cave (200ft).” Just the day to day itinerary of a cameraman!

snakee

Having already secured one award under his belt, Nevada is next with his curious snail nomination. (See it here:).

Hopefully there will be lots to come from the Adventurer on our screens, we wish him the best of luck in his career! If you didn’t hear the interview for my radio show, catch up here: